collecting_society - Datenbank #1140

Finish allocation processes
02/27/2023 08:11 PM - Alexander Blum

Status: Neu Start date: 03/03/2023
Priority: Normal Due date: 03/12/2023
Assignee: Thomas Mielke % Done: 10%
Category: Estimated time: 80.00 hours
Target version: Spent time: 10.00 hours
Description

Background

® |nvoice.amount/shared_amount are only helper attributes for testing the invoicing, should be replaced by
UtilisationIndicators.invoice_amount = UtilizationIndicators.administration_fee + UtilizationIndicators.distribution_amount
¢ relationship see also database diagram

e use erpserver> db-console for a tryton console to test the functions; maybe write a script with some objects initialized and import
it there

>>> Tariff = pool.get('tariff_system.tariff')
>>> tariff = Tariff(1)

Procedure

1. Write a wizard to trigger the allocation process
o can be triggered by
= cron job
= manual action
¢ in Declaration Menu (action in entry view or on selected items in list view)
¢ in Utilization Menu (action in entry view or on selected items in list view). Maybe we could skip that, but probable
it's a valid usecase, like:
o if some utilization (tariff bound!) of a declaration should be payed for and some other has issues to be
resolved first
o or a multi day festival event and the utilisations should be split.
o creates allocations with all corresponding utilisations connected, one allocation for each licensee
o loops over different sets of declarations depending on where/how the action was triggered (algorithm should be generic,
see next point confirm screen how this is done; not sure, how to handle the same action with different selections though, all
other things should be similiar to the existing example):
= declarations list with no selection: all suitable declarations with suitable utilisations (default for the cron job e.g. each
day)
= declarations list with selection: all suitable declaration.utilisations for each selected suitable declaration
= declaration entry: all suitable declaration.utilisations for this declaration (if suitable)
= utilisations list with no selection: all suitable selected utilisations
= utilisations list with selection: all suitable utilisations in list
= utilisation entry: this utilisation (if suitable)
o confirm screen (like in fingerprint_merge, maybe a tree list with declarations -> utilisations)
= |ist of definitely selected utilisations/declarations
= info on deselection of non suitable utilisations/declarations
2. Write a dataset triggering the wizard for some Declarations
o ensure, that non complete utilisation datasets for manual tests are still available

3. Implement the Tariff and TariffSystem formulas from database diagram
o fomulas should have the exact same plain value parameters as stated in the tariff system (check the latest version), so that

parametrized calling is possible via formula = getattr(tariff, 'method_name'). they should not receive some tryton object, so
they can be used (and tested) standalone

04/27/2024 1/6

https://redmine.c3s.cc/projects/collecting_society/wiki/Databasemodels#Invoicing
https://github.com/C3S/collecting_society/blob/development/collecting_society.py#L829
https://github.com/C3S/collecting_society/blob/development/collecting_society.xml#L800
https://github.com/C3S/collecting_society/blob/development/collecting_society.py#L3973
https://github.com/C3S/collecting_society/blob/development/collecting_society.py#L3973
https://github.com/C3S/collecting_society/blob/development/collecting_society.py#L4194
https://github.com/C3S/collecting_society_docker/blob/development/volumes/shared/data/datasets%0A/device_message_fingerprint_merge.py#L29
https://redmine.c3s.cc/projects/collecting_society/wiki/Databasemodels#Invoicing

o each formula should be one static method
= TariffSystem parameters: tariff system version (dot replaced with underscore); like

@staticmethod
def formula_<tariffsystemversion>(...):

[.]

return invoice_amount

= Tariff parameters: tariff code (includes version already, dot replaced with underscore); one for each tariff; like

@staticmethod
def formula_<tariffcode>(...):

[.]

return base, relevance, adjustments

= maybe better change the tariff_system.version.code, that it is save to use as function names in general and omit the
replacements here

o add an instance method, to be able to easily fetch the corresponding formula from an instance
= TariffSystem

def get_formula(self):
return getattr(self, f"formula_{self.version.replace(',’", '_")}")

= Tariff

def get_formula(self):
return getattr(self, f"formula_{self.code.replace(',', ' ")}")

4. Implement the instance methods

o params:
= sample: indicator set
e e.g. 'estimated’, 'confirmed', might depend on tariff
e maybe also 'all' to calculate all indicator sets, but then the return value has to be e.g. a dict with sample name as
key and the tuple (base, relevance, adjustments) as value
= update: write or just calculate the results
o maybe rename calculate_invoice_amount, as all values are returned, or maybe better split invoice amount calculation (only
invoice_amount returned) from calculating the distribution_amount and administration_fee (but not sure if this is needed by
some other process)

o Allocation.calculate_invoice_amount(self, sample, update=False)

invoice_amount_sum =0

distribution_amount_sum =0

administration_fee_sum =0

for utilisation self.utilisations:
invoice_amount, distribution_amount, administration_fee =\

utilisation.calculate_invoice_amount(sample, update)

invoice_amount_sum += invoice_amount
distribution_amount_sum += distribution_amount
administration_fee_sum += administration_fee

return invoice_amount, distribution_amount, administration_fee

o Utilisation.calculate_invoice_amount(self, sample, update=False)

utilisation = self

04/27/2024 2/6

invoice_amount = self.tariff.calculate_invoice_amount(utilisation, sample, update)
return invoice_amount, distribution_amount, admnistration_fee

o Tariff.calculate_invoice_amount(self, utilisation, sample, update=False)
formula = self.get_formula()
context_indicators = getattr(utilisation.context, f'{sample}_indicators')

generic way to get all and only indicators needed for all different formulas
import inspect # place import on top of file
formula_indicators = {

field: getattr(context_indicators, field)

for field in inspect.signature(formula).parameters

}

base, relevance, adjustments = formula(**formula_indicators):
invoice_amount, distribution_amount, administration_fee =\
tariff_system.calculate_invoice_amount(base, relevance, adjustments)

if update:
utilisation_indicators = getattr(utilisation, f'{sample}_indicators')
utilisation_indicators.base = base
utilisation_indicators.relevance = relevance
utilisation_indicators.adjustments = adjustments
utilisation_indicators.invoice_amount = invoice_amount
utilisation_indicators.distribution_amount = distribution_amount
utilisation_indicators.administration_fee = administration_fee
utilisation_indicators.save()

return invoice_amount, distribution_amount, administration_fee

o TariffSystem.calculate_invoice_amount(self, base, relevance, adjustments)
formula = self.get_formula()
invoice_amount = formula(base, relevance, adjustments)
distribution_amount = invoice_amount * self.administration_share
administration_fee = invoice_amount - distribution_amount

check if results add up

return invoice_amount, distribution_amount, administration_fee

5. Implement the same for calculate_utilisation_indicators(), maybe reuse in calculate_invoice_amount()
o Utilisation.calculate_utilisation_indicators(self, sample, update)
o Tariff.calculate_utilisation_indicators(self, utilisation, sample, update)
o best case: each formula 0 node with a custom method to use, and one method to integrate all of them (e.g. another
calculate_invoice_split() function)

6. Implement a wizard to recalculate invoice amounts / utilsation indicators (prevent, if invoice is already issued)

7. Check the wizard to write invoices (exists already)

8. Write datasets to trigger the invoice action for the Allocations

o ensure, that some allocations are still left to invoice for manual tests

Associated revisions

Revision 9¢5fd1¢7 - 03/06/2023 04:18 PM - Thomas Mielke

added wizard for allocation; ref #1140

04/27/2024 3/6

https://redmine.c3s.cc/projects/collecting_society/wiki/Databasemodels#Invoicing
https://github.com/C3S/collecting_society/blob/development/collecting_society.py#L829

Revision 8b0682a9 - 03/10/2023 05:58 PM - Thomas Mielke

renamed wizard 'allocate’ to 'collect'; ref #1140

old wizard name: Allocate/utilisation.allocate

old ModelView name: AllocateStart/utilisation.allocate.start

History

new: Collect/utilisation.allocation.collect
new: CollectStart/utilisation.allocation.collect.start

#1 - 02/27/2023 08:41 PM - Alexander Blum

- Description updated

#2 - 02/27/2023 09:03 PM - Alexander Blum

- Description updated

#3 - 02/27/2023 09:29 PM - Alexander Blum

- Description updated

#4 - 02/27/2023 09:31 PM - Alexander Blum

- Description updated

#5 - 02/27/2023 09:33 PM - Alexander Blum

- Description updated

#6 - 02/27/2023 09:36 PM - Alexander Blum

- Description updated

#7 - 02/27/2023 09:36 PM - Alexander Blum

- Description updated

#8 - 02/27/2023 09:39 PM - Alexander Blum

For the development of the functions, the tryton console will be your friend:

$ docker compose run --rm --service-ports erpserver bash

> db-console

#9 - 02/27/2023 10:50 PM - Alexander Blum
- Description updated

#10 - 02/27/2023 11:02 PM - Alexander Blum

- Description updated

#11 - 02/28/2023 12:23 AM - Alexander Blum

- Description updated

#12 - 02/28/2023 12:42 AM - Alexander Blum
- Description updated

04/27/2024

4/6

https://docs.c3s.cc/collecting_society/development/generated/collecting_society_docker_README.html#id28

#13 - 02/28/2023 12:50 AM - Alexander Blum

- Description updated

#14 - 02/28/2023 12:55 AM - Alexander Blum

- Description updated

#15 - 02/28/2023 01:05 AM - Alexander Blum

- Description updated

#16 - 02/28/2023 01:14 AM - Alexander Blum

- Description updated

#17 - 02/28/2023 01:26 AM - Alexander Blum

- Description updated

#18 - 02/28/2023 01:28 AM - Alexander Blum

- Description updated

#19 - 02/28/2023 01:29 AM - Alexander Blum

- Description updated

#20 - 02/28/2023 01:34 AM - Alexander Blum

- Description updated

#21 - 02/28/2023 01:44 AM - Alexander Blum
- Description updated

#22 - 02/28/2023 01:51 AM - Alexander Blum

- Description updated

#23 - 03/03/2023 06:46 PM - Thomas Mielke
- Due date set to 03/12/2023
- Start date set to 03/03/2023
- Estimated time set to 80.00

#24 - 03/03/2023 07:32 PM - Thomas Mielke

what do you mean by "dot replaced with underscore"?

#25 - 03/03/2023 11:40 PM - Alexander Blum

in our demo data the tariff_system.code is e.g. "1.0". dots are not allowed in method names, so instead of "formula_1.0()" sanitize the name to
"formula_1_0()". same with tariff code, which is just "self.code + self.tariff_system.code". or restrict tariff_system.code and tariff.code to contain only
chars allowed in function names.

#26 - 03/03/2023 11:58 PM - Alexander Blum

- Description updated

#27 - 03/04/2023 12:02 AM - Alexander Blum

- Description updated

04/27/2024 5/6

#28 - 03/06/2023 04:20 PM - Thomas Mielke
- % Done changed from 0 to 10

04/27/2024 6/6

http://www.tcpdf.org

