
collecting_society - Datenbank #1140

Finish allocation processes

02/27/2023 08:11 PM - Alexander Blum

Status: Neu Start date: 03/03/2023

Priority: Normal Due date: 03/12/2023

Assignee: Thomas Mielke % Done: 10%

Category: Estimated time: 80.00 hours

Target version: Spent time: 10.00 hours

Description

Background

Invoice.amount/shared_amount are only helper attributes for testing the invoicing, should be replaced by

UtilisationIndicators.invoice_amount = UtilizationIndicators.administration_fee + UtilizationIndicators.distribution_amount

relationship see also database diagram

use erpserver> db-console for a tryton console to test the functions; maybe write a script with some objects initialized and import

it there

>>> Tariff = pool.get('tariff_system.tariff')

>>> tariff = Tariff(1)

Procedure

1. Write a wizard to trigger the allocation process

can be triggered by

cron job

manual action

in Declaration Menu (action in entry view or on selected items in list view)

in Utilization Menu (action in entry view or on selected items in list view). Maybe we could skip that, but probable

it's a valid usecase, like:

if some utilization (tariff bound!) of a declaration should be payed for and some other has issues to be

resolved first

or a multi day festival event and the utilisations should be split.

creates allocations with all corresponding utilisations connected, one allocation for each licensee

loops over different sets of declarations depending on where/how the action was triggered (algorithm should be generic,

see next point confirm screen how this is done; not sure, how to handle the same action with different selections though, all

other things should be similiar to the existing example):

declarations list with no selection: all suitable declarations with suitable utilisations (default for the cron job e.g. each

day)

declarations list with selection: all suitable declaration.utilisations for each selected suitable declaration

declaration entry: all suitable declaration.utilisations for this declaration (if suitable)

utilisations list with no selection: all suitable selected utilisations

utilisations list with selection: all suitable utilisations in list

utilisation entry: this utilisation (if suitable)

confirm screen (like in fingerprint_merge, maybe a tree list with declarations -> utilisations)

list of definitely selected utilisations/declarations

info on deselection of non suitable utilisations/declarations

2. Write a dataset triggering the wizard for some Declarations

ensure, that non complete utilisation datasets for manual tests are still available

3. Implement the Tariff and TariffSystem formulas from database diagram

fomulas should have the exact same plain value parameters as stated in the tariff system (check the latest version), so that

parametrized calling is possible via formula = getattr(tariff, 'method_name'). they should not receive some tryton object, so

they can be used (and tested) standalone

04/27/2024 1/6

https://redmine.c3s.cc/projects/collecting_society/wiki/Databasemodels#Invoicing
https://github.com/C3S/collecting_society/blob/development/collecting_society.py#L829
https://github.com/C3S/collecting_society/blob/development/collecting_society.xml#L800
https://github.com/C3S/collecting_society/blob/development/collecting_society.py#L3973
https://github.com/C3S/collecting_society/blob/development/collecting_society.py#L3973
https://github.com/C3S/collecting_society/blob/development/collecting_society.py#L4194
https://github.com/C3S/collecting_society_docker/blob/development/volumes/shared/data/datasets%0A/device_message_fingerprint_merge.py#L29
https://redmine.c3s.cc/projects/collecting_society/wiki/Databasemodels#Invoicing

each formula should be one static method

TariffSystem parameters: tariff system version (dot replaced with underscore); like

@staticmethod

def formula_<tariffsystemversion>(...):

 [...]

 return invoice_amount

Tariff parameters: tariff code (includes version already, dot replaced with underscore); one for each tariff; like

@staticmethod

def formula_<tariffcode>(...):

 [...]

 return base, relevance, adjustments

maybe better change the tariff_system.version.code, that it is save to use as function names in general and omit the

replacements here

add an instance method, to be able to easily fetch the corresponding formula from an instance

TariffSystem

def get_formula(self):

 return getattr(self, f"formula_{self.version.replace(',', '_')}")

Tariff

def get_formula(self):

 return getattr(self, f"formula_{self.code.replace(',', '_')}")

4. Implement the instance methods

params:

sample: indicator set

e.g. 'estimated', 'confirmed', might depend on tariff

maybe also 'all' to calculate all indicator sets, but then the return value has to be e.g. a dict with sample name as

key and the tuple (base, relevance, adjustments) as value

update: write or just calculate the results

maybe rename calculate_invoice_amount, as all values are returned, or maybe better split invoice amount calculation (only

invoice_amount returned) from calculating the distribution_amount and administration_fee (but not sure if this is needed by

some other process)

Allocation.calculate_invoice_amount(self, sample, update=False)

invoice_amount_sum = 0

distribution_amount_sum = 0

administration_fee_sum = 0

for utilisation self.utilisations:

 invoice_amount, distribution_amount, administration_fee = \

 utilisation.calculate_invoice_amount(sample, update)

 invoice_amount_sum += invoice_amount

 distribution_amount_sum += distribution_amount

 administration_fee_sum += administration_fee

return invoice_amount, distribution_amount, administration_fee

Utilisation.calculate_invoice_amount(self, sample, update=False)

utilisation = self

04/27/2024 2/6

invoice_amount = self.tariff.calculate_invoice_amount(utilisation, sample, update)

return invoice_amount, distribution_amount, admnistration_fee

Tariff.calculate_invoice_amount(self, utilisation, sample, update=False)

formula = self.get_formula()

context_indicators = getattr(utilisation.context, f'{sample}_indicators')

generic way to get all and only indicators needed for all different formulas

import inspect # place import on top of file

formula_indicators = {

 field: getattr(context_indicators, field)

 for field in inspect.signature(formula).parameters

}

base, relevance, adjustments = formula(**formula_indicators):

invoice_amount, distribution_amount, administration_fee = \

 tariff_system.calculate_invoice_amount(base, relevance, adjustments)

if update:

 utilisation_indicators = getattr(utilisation, f'{sample}_indicators')

 utilisation_indicators.base = base

 utilisation_indicators.relevance = relevance

 utilisation_indicators.adjustments = adjustments

 utilisation_indicators.invoice_amount = invoice_amount

 utilisation_indicators.distribution_amount = distribution_amount

 utilisation_indicators.administration_fee = administration_fee

 utilisation_indicators.save()

return invoice_amount, distribution_amount, administration_fee

TariffSystem.calculate_invoice_amount(self, base, relevance, adjustments)

formula = self.get_formula()

invoice_amount = formula(base, relevance, adjustments)

distribution_amount = invoice_amount * self.administration_share

administration_fee = invoice_amount - distribution_amount

check if results add up

return invoice_amount, distribution_amount, administration_fee

5. Implement the same for calculate_utilisation_indicators(), maybe reuse in calculate_invoice_amount()

Utilisation.calculate_utilisation_indicators(self, sample, update)

Tariff.calculate_utilisation_indicators(self, utilisation, sample, update)

best case: each formula o node with a custom method to use, and one method to integrate all of them (e.g. another

calculate_invoice_split() function)

6. Implement a wizard to recalculate invoice amounts / utilsation indicators (prevent, if invoice is already issued)

7. Check the wizard to write invoices (exists already)

8. Write datasets to trigger the invoice action for the Allocations

ensure, that some allocations are still left to invoice for manual tests

Associated revisions

Revision 9c5fd1c7 - 03/06/2023 04:18 PM - Thomas Mielke

added wizard for allocation; ref #1140

04/27/2024 3/6

https://redmine.c3s.cc/projects/collecting_society/wiki/Databasemodels#Invoicing
https://github.com/C3S/collecting_society/blob/development/collecting_society.py#L829

Revision 8b0682a9 - 03/10/2023 05:58 PM - Thomas Mielke

renamed wizard 'allocate' to 'collect'; ref #1140

old wizard name: Allocate/utilisation.allocate new: Collect/utilisation.allocation.collect

old ModelView name: AllocateStart/utilisation.allocate.start new: CollectStart/utilisation.allocation.collect.start

History

#1 - 02/27/2023 08:41 PM - Alexander Blum

- Description updated

#2 - 02/27/2023 09:03 PM - Alexander Blum

- Description updated

#3 - 02/27/2023 09:29 PM - Alexander Blum

- Description updated

#4 - 02/27/2023 09:31 PM - Alexander Blum

- Description updated

#5 - 02/27/2023 09:33 PM - Alexander Blum

- Description updated

#6 - 02/27/2023 09:36 PM - Alexander Blum

- Description updated

#7 - 02/27/2023 09:36 PM - Alexander Blum

- Description updated

#8 - 02/27/2023 09:39 PM - Alexander Blum

For the development of the functions, the tryton console will be your friend:

$ docker compose run --rm --service-ports erpserver bash

> db-console

#9 - 02/27/2023 10:50 PM - Alexander Blum

- Description updated

#10 - 02/27/2023 11:02 PM - Alexander Blum

- Description updated

#11 - 02/28/2023 12:23 AM - Alexander Blum

- Description updated

#12 - 02/28/2023 12:42 AM - Alexander Blum

- Description updated

04/27/2024 4/6

https://docs.c3s.cc/collecting_society/development/generated/collecting_society_docker_README.html#id28

#13 - 02/28/2023 12:50 AM - Alexander Blum

- Description updated

#14 - 02/28/2023 12:55 AM - Alexander Blum

- Description updated

#15 - 02/28/2023 01:05 AM - Alexander Blum

- Description updated

#16 - 02/28/2023 01:14 AM - Alexander Blum

- Description updated

#17 - 02/28/2023 01:26 AM - Alexander Blum

- Description updated

#18 - 02/28/2023 01:28 AM - Alexander Blum

- Description updated

#19 - 02/28/2023 01:29 AM - Alexander Blum

- Description updated

#20 - 02/28/2023 01:34 AM - Alexander Blum

- Description updated

#21 - 02/28/2023 01:44 AM - Alexander Blum

- Description updated

#22 - 02/28/2023 01:51 AM - Alexander Blum

- Description updated

#23 - 03/03/2023 06:46 PM - Thomas Mielke

- Due date set to 03/12/2023

- Start date set to 03/03/2023

- Estimated time set to 80.00

#24 - 03/03/2023 07:32 PM - Thomas Mielke

what do you mean by "dot replaced with underscore"?

#25 - 03/03/2023 11:40 PM - Alexander Blum

in our demo data the tariff_system.code is e.g. "1.0". dots are not allowed in method names, so instead of "formula_1.0()" sanitize the name to

"formula_1_0()". same with tariff code, which is just "self.code + self.tariff_system.code". or restrict tariff_system.code and tariff.code to contain only

chars allowed in function names.

#26 - 03/03/2023 11:58 PM - Alexander Blum

- Description updated

#27 - 03/04/2023 12:02 AM - Alexander Blum

- Description updated

04/27/2024 5/6

#28 - 03/06/2023 04:20 PM - Thomas Mielke

- % Done changed from 0 to 10

Powered by TCPDF (www.tcpdf.org)

04/27/2024 6/6

http://www.tcpdf.org

